Source code for fairseq.data.iterators

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import itertools
import logging
import math
import operator
import os
import queue
import time
from threading import Thread

import numpy as np
import torch
from fairseq.data import data_utils


logger = logging.getLogger(__name__)

# Object used by _background_consumer to signal the source is exhausted
# to the main thread.
_sentinel = object()


[docs]class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count. Args: iterable (iterable): iterable to wrap start (int): starting iteration count. Note that this doesn't actually advance the iterator. total (int): override the iterator length returned by ``__len__``. This can be used to truncate *iterator*. Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, start=None, total=None): self.iterable = iterable self.itr = iter(self) if start is None: self.n = getattr(iterable, "n", 0) else: self.n = start if total is None: self.total = self.n + len(iterable) else: self.total = total def __len__(self): return self.total def __iter__(self): for x in self.iterable: if self.n >= self.total: raise RuntimeError( "Mismatch between actual and expected iterable length. " "This may be caused by resuming training from a checkpoint using " "a different number of GPUs, in which case you can try the " "--reset-dataloader option. Alternatively you may have a train or " "validation set that is smaller than the number of GPUs. If none " "of these apply, please report this to the fairseq developers." ) self.n += 1 yield x def __next__(self): return next(self.itr)
[docs] def has_next(self): """Whether the iterator has been exhausted.""" return self.n < len(self)
[docs] def skip(self, num_to_skip): """Fast-forward the iterator by skipping *num_to_skip* elements.""" next(itertools.islice(self.itr, num_to_skip, num_to_skip), None) return self
[docs] def take(self, n): """ Truncates the iterator to n elements at most. """ self.total = min(self.total, n) # Propagate this change to the underlying iterator # Only take after what we have already consumed (i.e. after restarting # from checkpoint mid epoch, we have to subtract self.n which is the # starting point) # # This to maintain the invariant self.total = self.n + len(iterable), # before calling __next__ or __iter__ propagated_take = max(n - self.n, 0) if hasattr(self.iterable, "take"): self.iterable.take(propagated_take) else: self.iterable = itertools.islice(self.iterable, propagated_take)
class EpochBatchIterating(object): def __len__(self) -> int: raise NotImplementedError @property def next_epoch_idx(self): raise NotImplementedError def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator (default: True). fix_batches_to_gpus: ensure that batches are always allocated to the same shards across epochs. Requires that :attr:`dataset` supports prefetching (default: False). """ raise NotImplementedError def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" raise NotImplementedError @property def iterations_in_epoch(self) -> int: """The number of consumed batches in the current epoch.""" raise NotImplementedError def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" raise NotImplementedError def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" raise NotImplementedError class StreamingEpochBatchIterator(EpochBatchIterating): def __init__( self, dataset, epoch=1, num_shards=1, shard_id=0, ): assert isinstance(dataset, torch.utils.data.IterableDataset) self.dataset = dataset self.epoch = max(epoch, 1) # we use 1-based indexing for epochs self._current_epoch_iterator = None self.num_shards = num_shards self.shard_id = shard_id @property def next_epoch_idx(self): """Return the epoch index after *next_epoch_itr* is called.""" if self._current_epoch_iterator is not None and self.end_of_epoch(): return self.epoch + 1 else: return self.epoch def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False): self.epoch = self.next_epoch_idx if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) self._current_epoch_iterator = CountingIterator( iterable=ShardedIterator( iterable=self.dataset, num_shards=self.num_shards, shard_id=self.shard_id, ), ) return self._current_epoch_iterator def end_of_epoch(self) -> bool: return not self._current_epoch_iterator.has_next() @property def iterations_in_epoch(self) -> int: if self._current_epoch_iterator is not None: return self._current_epoch_iterator.n return 0 def state_dict(self): return { "epoch": self.epoch, } def load_state_dict(self, state_dict): self.epoch = state_dict["epoch"]
[docs]class EpochBatchIterator(EpochBatchIterating): """A multi-epoch iterator over a :class:`torch.utils.data.Dataset`. Compared to :class:`torch.utils.data.DataLoader`, this iterator: - can be reused across multiple epochs with the :func:`next_epoch_itr` method (optionally shuffled between epochs) - can be serialized/deserialized with the :func:`state_dict` and :func:`load_state_dict` methods - supports sharding with the *num_shards* and *shard_id* arguments Args: dataset (~torch.utils.data.Dataset): dataset from which to load the data collate_fn (callable): merges a list of samples to form a mini-batch batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of indices, or a callable to create such an iterator (~torch.utils.data.Sampler). A callable batch_sampler will be called for each epoch to enable per epoch dynamic batch iterators defined by this callable batch_sampler. seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). buffer_size (int, optional): the number of batches to keep ready in the queue. Helps speeding up dataloading. When buffer_size is zero, the default torch.utils.data.DataLoader preloading is used. timeout (int, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative (default: ``0``). disable_shuffling (bool, optional): force disable shuffling (default: ``False``). """ def __init__( self, dataset, collate_fn, batch_sampler, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, buffer_size=0, timeout=0, disable_shuffling=False, ): assert isinstance(dataset, torch.utils.data.Dataset) self.dataset = dataset self.collate_fn = collate_fn self.batch_sampler = batch_sampler self._frozen_batches = ( tuple(batch_sampler) if not callable(batch_sampler) else None ) self.seed = seed self.num_shards = num_shards self.shard_id = shard_id self.num_workers = num_workers # This upper limit here is to prevent people from abusing this feature # in a shared computing environment. self.buffer_size = min(buffer_size, 20) self.timeout = timeout self.disable_shuffling = disable_shuffling self.epoch = max(epoch, 1) # we use 1-based indexing for epochs self.shuffle = not disable_shuffling self._cur_epoch_itr = None self._next_epoch_itr = None self._supports_prefetch = getattr(dataset, "supports_prefetch", False) @property def frozen_batches(self): if self._frozen_batches is None: self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch)) return self._frozen_batches @property def first_batch(self): if len(self.frozen_batches) == 0: raise Exception( "The dataset is empty. This could indicate " "that all elements in the dataset have been skipped. " "Try increasing the max number of allowed tokens or using " "a larger dataset." ) if getattr(self.dataset, "supports_fetch_outside_dataloader", True): return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]]) else: return "DUMMY" def __len__(self): return int(math.ceil(len(self.frozen_batches) / float(self.num_shards))) @property def n(self): return self.iterations_in_epoch @property def next_epoch_idx(self): """Return the epoch index after *next_epoch_itr* is called.""" if self._next_epoch_itr is not None: return self.epoch elif self._cur_epoch_itr is not None and self.end_of_epoch(): return self.epoch + 1 else: return self.epoch
[docs] def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator (default: True). fix_batches_to_gpus: ensure that batches are always allocated to the same shards across epochs. Requires that :attr:`dataset` supports prefetching (default: False). """ if self.disable_shuffling: shuffle = False self.epoch = self.next_epoch_idx if hasattr(self.dataset, "set_epoch"): self.dataset.set_epoch(self.epoch) if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: if callable(self.batch_sampler): # reset _frozen_batches to refresh the next epoch self._frozen_batches = None self._cur_epoch_itr = self._get_iterator_for_epoch( self.epoch, shuffle, fix_batches_to_gpus=fix_batches_to_gpus, ) self.shuffle = shuffle return self._cur_epoch_itr
[docs] def end_of_epoch(self) -> bool: """Returns whether the most recent epoch iterator has been exhausted""" return not self._cur_epoch_itr.has_next()
@property def iterations_in_epoch(self): """The number of consumed batches in the current epoch.""" if self._cur_epoch_itr is not None: return self._cur_epoch_itr.n elif self._next_epoch_itr is not None: return self._next_epoch_itr.n return 0
[docs] def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" if self.end_of_epoch(): epoch = self.epoch + 1 iter_in_epoch = 0 else: epoch = self.epoch iter_in_epoch = self.iterations_in_epoch return { "version": 2, "epoch": epoch, "iterations_in_epoch": iter_in_epoch, "shuffle": self.shuffle, }
[docs] def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.epoch = state_dict["epoch"] itr_pos = state_dict.get("iterations_in_epoch", 0) version = state_dict.get("version", 1) if itr_pos > 0: # fast-forward epoch iterator self._next_epoch_itr = self._get_iterator_for_epoch( self.epoch, shuffle=state_dict.get("shuffle", True), offset=itr_pos, ) if self._next_epoch_itr is None: if version == 1: # legacy behavior: we finished the epoch, increment epoch counter self.epoch += 1 else: raise RuntimeError( "Cannot resume training due to dataloader mismatch, please " "report this to the fairseq developers. You can relaunch " "training with `--reset-dataloader` and it should work." ) else: self._next_epoch_itr = None
def _get_iterator_for_epoch( self, epoch, shuffle, fix_batches_to_gpus=False, offset=0 ): def shuffle_batches(batches, seed): with data_utils.numpy_seed(seed): np.random.shuffle(batches) return batches if self._supports_prefetch: batches = self.frozen_batches if shuffle and not fix_batches_to_gpus: batches = shuffle_batches(list(batches), self.seed + epoch) batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) self.dataset.prefetch([i for s in batches for i in s]) if shuffle and fix_batches_to_gpus: batches = shuffle_batches(batches, self.seed + epoch + self.shard_id) else: if shuffle: batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch) else: batches = self.frozen_batches batches = list( ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]) ) if offset > 0 and offset >= len(batches): return None if self.num_workers > 0: os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning" # Create data loader itr = torch.utils.data.DataLoader( self.dataset, collate_fn=self.collate_fn, batch_sampler=batches[offset:], num_workers=self.num_workers, timeout=self.timeout, ) # Wrap with a BufferedIterator if needed if self.buffer_size > 0: itr = BufferedIterator(self.buffer_size, itr) # Wrap with CoutingIterator itr = CountingIterator(itr, start=offset) return itr
[docs]class GroupedIterator(CountingIterator): """Wrapper around an iterable that returns groups (chunks) of items. Args: iterable (iterable): iterable to wrap chunk_size (int): size of each chunk Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, chunk_size): itr = _chunk_iterator(iterable, chunk_size) super().__init__( itr, start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))), total=int(math.ceil(len(iterable) / float(chunk_size))), ) self.chunk_size = chunk_size
def _chunk_iterator(itr, chunk_size): chunk = [] for x in itr: chunk.append(x) if len(chunk) == chunk_size: yield chunk chunk = [] if len(chunk) > 0: yield chunk
[docs]class ShardedIterator(CountingIterator): """A sharded wrapper around an iterable, padded to length. Args: iterable (iterable): iterable to wrap num_shards (int): number of shards to split the iterable into shard_id (int): which shard to iterator over fill_value (Any, optional): padding value when the iterable doesn't evenly divide *num_shards* (default: None). Attributes: n (int): number of elements consumed from this iterator """ def __init__(self, iterable, num_shards, shard_id, fill_value=None): if shard_id < 0 or shard_id >= num_shards: raise ValueError("shard_id must be between 0 and num_shards") sharded_len = int(math.ceil(len(iterable) / float(num_shards))) itr = map( operator.itemgetter(1), itertools.zip_longest( range(sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ), ) super().__init__( itr, start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))), total=sharded_len, )
class BackgroundConsumer(Thread): def __init__(self, queue, source, max_len): Thread.__init__(self) self._queue = queue self._source = source self._max_len = max_len self.count = 0 def run(self): try: for item in self._source: self._queue.put(item) # Stop if we reached the maximum length self.count += 1 if self._max_len is not None and self.count >= self._max_len: break # Signal the consumer we are done. self._queue.put(_sentinel) except Exception as e: self._queue.put(e) class BufferedIterator(object): def __init__(self, size, iterable): self._queue = queue.Queue(size) self._iterable = iterable self._consumer = None self.start_time = time.time() self.warning_time = None self.total = len(iterable) def _create_consumer(self): self._consumer = BackgroundConsumer( self._queue, self._iterable, self.total, ) self._consumer.daemon = True self._consumer.start() def __iter__(self): return self def __len__(self): return self.total def take(self, n): self.total = min(self.total, n) # Propagate this change to the underlying iterator if hasattr(self._iterable, "take"): self._iterable.take(n) def __next__(self): # Create consumer if not created yet if self._consumer is None: self._create_consumer() # Notify the user if there is a data loading bottleneck if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)): if time.time() - self.start_time > 5 * 60: if ( self.warning_time is None or time.time() - self.warning_time > 15 * 60 ): logger.debug( "Data loading buffer is empty or nearly empty. This may " "indicate a data loading bottleneck, and increasing the " "number of workers (--num-workers) may help." ) self.warning_time = time.time() # Get next example item = self._queue.get(True) if isinstance(item, Exception): raise item if item is _sentinel: raise StopIteration() return item