Source code for fairseq.optim.lr_scheduler.reduce_lr_on_plateau

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch.optim.lr_scheduler

from . import LegacyFairseqLRScheduler, register_lr_scheduler


[docs]@register_lr_scheduler("reduce_lr_on_plateau") class ReduceLROnPlateau(LegacyFairseqLRScheduler): """ Decay the LR by a factor every time the validation loss plateaus. Also comes with optional warmup phase, where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter the lr is adjusted according to original reduce_on_plateau scheme. During warmup:: lrs = torch.linspace( args.warmup_init_lr, args.lr, args.warmup_updates ) lr = lrs[update_num] """ def __init__(self, args, optimizer): super().__init__(args, optimizer) if len(args.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with reduce_lr_on_plateau." " Consider --lr-scheduler=fixed instead." ) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer.optimizer, patience=args.lr_patience, factor=args.lr_shrink, mode="max" if args.maximize_best_checkpoint_metric else "min", threshold=args.lr_threshold, ) warmup_end_lr = args.lr[0] # if no warm up, sets initial lr to be args.lr[0] if args.warmup_init_lr < 0: args.warmup_init_lr = 0 if args.warmup_updates > 0 else warmup_end_lr # linearly warmup for the first args.warmup_updates if args.warmup_updates > 0: self.lr_step = (warmup_end_lr - args.warmup_init_lr) / args.warmup_updates # this flag is either set from arg when no warm up, or set by # step_update() when warmup finishes self.warmup_end = True if args.warmup_updates <= 0 else False # initial learning rate # this self.lr is used only during init and/or warm up period self.lr = args.warmup_init_lr self.optimizer.set_lr(self.lr)
[docs] @staticmethod def add_args(parser): """Add arguments to the parser for this LR scheduler.""" # fmt: off parser.add_argument('--lr-shrink', default=0.1, type=float, metavar='LS', help='shrink factor for annealing, lr_new = (lr * lr_shrink)') parser.add_argument('--lr-threshold', default=1e-4, type=float, metavar='LT', help='threshold for measuring the new optimum, ' 'to only focus on significant changes') parser.add_argument('--lr-patience', default=0, type=int, help='number of epochs with no improvement after which ' 'learning rate will be reduced') parser.add_argument('--warmup-updates', default=0, type=int, metavar='N', help='warmup the learning rate linearly for the first N updates') parser.add_argument('--warmup-init-lr', default=-1, type=float, metavar='LR', help='initial learning rate during warmup phase; default is args.lr')
# fmt: on
[docs] def state_dict(self): """Return the LR scheduler state dict.""" return { "best": self.lr_scheduler.best, "last_epoch": self.lr_scheduler.last_epoch, }
[docs] def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" self.lr_scheduler.best = state_dict["best"] if "last_epoch" in state_dict: self.lr_scheduler.last_epoch = state_dict["last_epoch"]
[docs] def step(self, epoch, val_loss=None): """ Update the learning rate at the end of the given epoch if warmup finishes otherwise no update of lr on epoch boundaries """ if val_loss is not None and self.warmup_end is True: self.lr_scheduler.step(val_loss) else: self.lr_scheduler.last_epoch = epoch return self.optimizer.get_lr()
[docs] def step_update(self, num_updates): """ Update the learning rate after each update.""" # if there is warmup if self.args.warmup_updates > 0: if num_updates <= self.args.warmup_updates: self.lr = self.args.warmup_init_lr + num_updates * self.lr_step self.optimizer.set_lr(self.lr) else: if self.warmup_end is False: self.warmup_end = True # else do nothing return self.optimizer.get_lr()