Source code for fairseq.optim.adam

# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import math
import types

import torch
import torch.optim

from . import FairseqOptimizer, register_optimizer


[docs]@register_optimizer('adam') class FairseqAdam(FairseqOptimizer): def __init__(self, args, params): super().__init__(args, params) if torch.cuda.is_available(): try: from apex.optimizers import FusedAdam as _FusedAdam self._optimizer = FusedAdam(params, **self.optimizer_config) except ImportError: self._optimizer = Adam(params, **self.optimizer_config) else: self._optimizer = Adam(params, **self.optimizer_config)
[docs] @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--adam-betas', default='(0.9, 0.999)', metavar='B', help='betas for Adam optimizer') parser.add_argument('--adam-eps', type=float, default=1e-8, metavar='D', help='epsilon for Adam optimizer') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay')
# fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { 'lr': self.args.lr[0], 'betas': eval(self.args.adam_betas), 'eps': self.args.adam_eps, 'weight_decay': self.args.weight_decay, }
class Adam(torch.optim.Optimizer): """Implements Adam algorithm. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(Adam, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] p_data_fp32 = p.data.float() state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) if amsgrad: state['max_exp_avg_sq'] = state['max_exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) p.data.copy_(p_data_fp32) return loss class FusedAdam(torch.optim.Optimizer): """ Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Compared to the original version in Apex, the fairseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction = True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0., max_grad_norm=0., amsgrad=False): global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") if amsgrad: raise RuntimeError('FusedAdam does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(FusedAdam, self).__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 @property def supports_memory_efficient_fp16(self): return True def step(self, closure=None, grads=None, scale=1., grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None]*len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0])!=list: grads_group = [grads] else: grads_group = grads if grad_norms is None: grad_norms = [None]*len(self.param_groups) for group, grads_this_group, grad_norm in zip(self.param_groups, grads_group, grad_norms): if grads_this_group is None: grads_this_group = [None]*len(group['params']) # compute combined scale factor for this group combined_scale = scale if group['max_grad_norm'] > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group['max_grad_norm'] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group['bias_correction'] else 0 for p, grad in zip(group['params'], grads_this_group): #note: p.grad should not ever be set for correct operation of mixed precision optimizer that sometimes sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError('FusedAdam does not support sparse gradients, please consider SparseAdam instead') p_data_fp32 = p.data.float() state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg = state['exp_avg'] exp_avg_sq = state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 out_p = p.data fused_adam_cuda.adam(p_data_fp32, out_p, exp_avg, exp_avg_sq, grad, group['lr'], beta1, beta2, group['eps'], combined_scale, state['step'], self.eps_mode, bias_correction, group['weight_decay']) return loss