Evaluating Pre-trained Models

First, download a pre-trained model along with its vocabularies:

> curl https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf -

This model uses a Byte Pair Encoding (BPE) vocabulary, so we’ll have to apply the encoding to the source text before it can be translated. This can be done with the apply_bpe.py script using the wmt14.en-fr.fconv-cuda/bpecodes file. @@ is used as a continuation marker and the original text can be easily recovered with e.g. sed s/@@ //g or by passing the --remove-bpe flag to fairseq-generate. Prior to BPE, input text needs to be tokenized using tokenizer.perl from mosesdecoder.

Let’s use fairseq-interactive to generate translations interactively. Here, we use a beam size of 5 and preprocess the input with the Moses tokenizer and the given Byte-Pair Encoding vocabulary. It will automatically remove the BPE continuation markers and detokenize the output.

> MODEL_DIR=wmt14.en-fr.fconv-py
> fairseq-interactive \
    --path $MODEL_DIR/model.pt $MODEL_DIR \
    --beam 5 --source-lang en --target-lang fr \
    --tokenizer moses \
    --bpe subword_nmt --bpe-codes $MODEL_DIR/bpecodes
| loading model(s) from wmt14.en-fr.fconv-py/model.pt
| [en] dictionary: 44206 types
| [fr] dictionary: 44463 types
| Type the input sentence and press return:
Why is it rare to discover new marine mammal species?
S-0     Why is it rare to discover new marine mam@@ mal species ?
H-0     -0.0643349438905716     Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins?
P-0     -0.0763 -0.1849 -0.0956 -0.0946 -0.0735 -0.1150 -0.1301 -0.0042 -0.0321 -0.0171 -0.0052 -0.0062 -0.0015

This generation script produces three types of outputs: a line prefixed with O is a copy of the original source sentence; H is the hypothesis along with an average log-likelihood; and P is the positional score per token position, including the end-of-sentence marker which is omitted from the text.

See the README for a full list of pre-trained models available.

Training a New Model

The following tutorial is for machine translation. For an example of how to use Fairseq for other tasks, such as Language Modeling, please see the examples/ directory.

Data Pre-processing

Fairseq contains example pre-processing scripts for several translation datasets: IWSLT 2014 (German-English), WMT 2014 (English-French) and WMT 2014 (English-German). To pre-process and binarize the IWSLT dataset:

> cd examples/translation/
> bash prepare-iwslt14.sh
> cd ../..
> TEXT=examples/translation/iwslt14.tokenized.de-en
> fairseq-preprocess --source-lang de --target-lang en \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/iwslt14.tokenized.de-en

This will write binarized data that can be used for model training to data-bin/iwslt14.tokenized.de-en.

Training

Use fairseq-train to train a new model. Here a few example settings that work well for the IWSLT 2014 dataset:

> mkdir -p checkpoints/fconv
> CUDA_VISIBLE_DEVICES=0 fairseq-train data-bin/iwslt14.tokenized.de-en \
    --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
    --arch fconv_iwslt_de_en --save-dir checkpoints/fconv

By default, fairseq-train will use all available GPUs on your machine. Use the CUDA_VISIBLE_DEVICES environment variable to select specific GPUs and/or to change the number of GPU devices that will be used.

Also note that the batch size is specified in terms of the maximum number of tokens per batch (--max-tokens). You may need to use a smaller value depending on the available GPU memory on your system.

Generation

Once your model is trained, you can generate translations using fairseq-generate (for binarized data) or fairseq-interactive (for raw text):

> fairseq-generate data-bin/iwslt14.tokenized.de-en \
    --path checkpoints/fconv/checkpoint_best.pt \
    --batch-size 128 --beam 5
| [de] dictionary: 35475 types
| [en] dictionary: 24739 types
| data-bin/iwslt14.tokenized.de-en test 6750 examples
| model fconv
| loaded checkpoint trainings/fconv/checkpoint_best.pt
S-721   danke .
T-721   thank you .
...

To generate translations with only a CPU, use the --cpu flag. BPE continuation markers can be removed with the --remove-bpe flag.

Advanced Training Options

Large mini-batch training with delayed updates

The --update-freq option can be used to accumulate gradients from multiple mini-batches and delay updating, creating a larger effective batch size. Delayed updates can also improve training speed by reducing inter-GPU communication costs and by saving idle time caused by variance in workload across GPUs. See Ott et al. (2018) for more details.

To train on a single GPU with an effective batch size that is equivalent to training on 8 GPUs:

> CUDA_VISIBLE_DEVICES=0 fairseq-train --update-freq 8 (...)

Training with half precision floating point (FP16)

Note

FP16 training requires a Volta GPU and CUDA 9.1 or greater

Recent GPUs enable efficient half precision floating point computation, e.g., using Nvidia Tensor Cores. Fairseq supports FP16 training with the --fp16 flag:

> fairseq-train --fp16 (...)

Lazily loading large training datasets

By default fairseq loads the entire training set into system memory. For large datasets, the --lazy-load option can be used to instead load batches on-demand. For optimal performance, use the --num-workers option to control the number of background processes that will load batches.

Distributed training

Distributed training in fairseq is implemented on top of torch.distributed. The easiest way to launch jobs is with the torch.distributed.launch tool.

For example, to train a large English-German Transformer model on 2 nodes each with 8 GPUs (in total 16 GPUs), run the following command on each node, replacing node_rank=0 with node_rank=1 on the second node:

> python -m torch.distributed.launch --nproc_per_node=8 \
    --nnodes=2 --node_rank=0 --master_addr="192.168.1.1" \
    --master_port=1234 \
    $(which fairseq-train) data-bin/wmt16_en_de_bpe32k \
    --arch transformer_vaswani_wmt_en_de_big --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \
    --lr 0.0005 --min-lr 1e-09 \
    --dropout 0.3 --weight-decay 0.0 --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --max-tokens 3584 \
    --fp16  --distributed-no-spawn