Source code for fairseq.modules.dynamic_crf_layer

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
This file is to re-implemented the low-rank and beam approximation of CRF layer
Proposed by:

Sun, Zhiqing, et al.
Fast Structured Decoding for Sequence Models
https://arxiv.org/abs/1910.11555

The CRF implementation is mainly borrowed from
https://github.com/kmkurn/pytorch-crf/blob/master/torchcrf/__init__.py

"""

import numpy as np
import torch
import torch.nn as nn


def logsumexp(x, dim=1):
    return torch.logsumexp(x.float(), dim=dim).type_as(x)


[docs]class DynamicCRF(nn.Module): """Dynamic CRF layer is used to approximate the traditional Conditional Random Fields (CRF) $P(y | x) = 1/Z(x) exp(sum_i s(y_i, x) + sum_i t(y_{i-1}, y_i, x))$ where in this function, we assume the emition scores (s) are given, and the transition score is a |V| x |V| matrix $M$ in the following two aspects: (1) it used a low-rank approximation for the transition matrix: $M = E_1 E_2^T$ (2) it used a beam to estimate the normalizing factor Z(x) """ def __init__(self, num_embedding, low_rank=32, beam_size=64): super().__init__() self.E1 = nn.Embedding(num_embedding, low_rank) self.E2 = nn.Embedding(num_embedding, low_rank) self.vocb = num_embedding self.rank = low_rank self.beam = beam_size
[docs] def extra_repr(self): return "vocab_size={}, low_rank={}, beam_size={}".format( self.vocb, self.rank, self.beam )
[docs] def forward(self, emissions, targets, masks, beam=None): """ Compute the conditional log-likelihood of a sequence of target tokens given emission scores Args: emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output ``(batch_size, seq_len, vocab_size)``. We assume batch-first targets (`~torch.LongTensor`): Sequence of target token indices ``(batch_size, seq_len) masks (`~torch.ByteTensor`): Mask tensor with the same size as targets Returns: `~torch.Tensor`: approximated log-likelihood """ numerator = self._compute_score(emissions, targets, masks) denominator = self._compute_normalizer(emissions, targets, masks, beam) return numerator - denominator
[docs] def forward_decoder(self, emissions, masks=None, beam=None): """ Find the most likely output sequence using Viterbi algorithm. Args: emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output ``(batch_size, seq_len, vocab_size)``. We assume batch-first masks (`~torch.ByteTensor`): Mask tensor with the same size as targets Returns: `~torch.LongTensor`: decoded sequence from the CRF model """ return self._viterbi_decode(emissions, masks, beam)
def _compute_score(self, emissions, targets, masks=None): batch_size, seq_len = targets.size() emission_scores = emissions.gather(2, targets[:, :, None])[:, :, 0] # B x T transition_scores = (self.E1(targets[:, :-1]) * self.E2(targets[:, 1:])).sum(2) scores = emission_scores scores[:, 1:] += transition_scores if masks is not None: scores = scores * masks.type_as(scores) return scores.sum(-1) def _compute_normalizer(self, emissions, targets=None, masks=None, beam=None): # HACK: we include "target" which is a hueristic for training # HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?) beam = beam if beam is not None else self.beam batch_size, seq_len = emissions.size()[:2] if targets is not None: _emissions = emissions.scatter(2, targets[:, :, None], np.float("inf")) beam_targets = _emissions.topk(beam, 2)[1] beam_emission_scores = emissions.gather(2, beam_targets) else: beam_emission_scores, beam_targets = emissions.topk(beam, 2) beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D beam_transition_matrix = torch.bmm( beam_transition_score1.view(-1, beam, self.rank), beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2), ) beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam) # compute the normalizer in the log-space score = beam_emission_scores[:, 0] # B x K for i in range(1, seq_len): next_score = score[:, :, None] + beam_transition_matrix[:, i - 1] next_score = logsumexp(next_score, dim=1) + beam_emission_scores[:, i] if masks is not None: score = torch.where(masks[:, i : i + 1], next_score, score) else: score = next_score # Sum (log-sum-exp) over all possible tags return logsumexp(score, dim=1) def _viterbi_decode(self, emissions, masks=None, beam=None): # HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?) beam = beam if beam is not None else self.beam batch_size, seq_len = emissions.size()[:2] beam_emission_scores, beam_targets = emissions.topk(beam, 2) beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D beam_transition_matrix = torch.bmm( beam_transition_score1.view(-1, beam, self.rank), beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2), ) beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam) traj_tokens, traj_scores = [], [] finalized_tokens, finalized_scores = [], [] # compute the normalizer in the log-space score = beam_emission_scores[:, 0] # B x K dummy = ( torch.arange(beam, device=score.device).expand(*score.size()).contiguous() ) for i in range(1, seq_len): traj_scores.append(score) _score = score[:, :, None] + beam_transition_matrix[:, i - 1] _score, _index = _score.max(dim=1) _score = _score + beam_emission_scores[:, i] if masks is not None: score = torch.where(masks[:, i : i + 1], _score, score) index = torch.where(masks[:, i : i + 1], _index, dummy) else: score, index = _score, _index traj_tokens.append(index) # now running the back-tracing and find the best best_score, best_index = score.max(dim=1) finalized_tokens.append(best_index[:, None]) finalized_scores.append(best_score[:, None]) for idx, scs in zip(reversed(traj_tokens), reversed(traj_scores)): previous_index = finalized_tokens[-1] finalized_tokens.append(idx.gather(1, previous_index)) finalized_scores.append(scs.gather(1, previous_index)) finalized_tokens.reverse() finalized_tokens = torch.cat(finalized_tokens, 1) finalized_tokens = beam_targets.gather(2, finalized_tokens[:, :, None])[:, :, 0] finalized_scores.reverse() finalized_scores = torch.cat(finalized_scores, 1) finalized_scores[:, 1:] = finalized_scores[:, 1:] - finalized_scores[:, :-1] return finalized_scores, finalized_tokens