Source code for fairseq.modules.multihead_attention

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F

from fairseq import utils


[docs]class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ 'value to be of the same size' self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias) self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False self.enable_torch_version = False if hasattr(F, "multi_head_attention_forward"): self.enable_torch_version = True else: self.enable_torch_version = False
[docs] def prepare_for_onnx_export_(self): self.onnx_trace = True
[docs] def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1/math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1/math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1/math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v)
[docs] def forward( self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None, before_softmax=False, need_head_weights=False, ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if self.enable_torch_version and not self.onnx_trace and incremental_state is None and not static_kv: return F.multi_head_attention_forward(query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if 'prev_key' in saved_state: prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: k = torch.cat((prev_key, k), dim=1) if 'prev_value' in saved_state: prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: v = torch.cat((prev_value, v), dim=1) key_padding_mask = self._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=saved_state.get('prev_key_padding_mask', None), batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state['prev_key_padding_mask'] = key_padding_mask self._set_input_buffer(incremental_state, saved_state) src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax(attn_weights, dim=-1, onnx_trace=self.onnx_trace) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if (self.onnx_trace and attn.size(1) == 1): # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) else: attn_weights = None return attn, attn_weights
@staticmethod def _append_prev_key_padding_mask( key_padding_mask, prev_key_padding_mask, batch_size, src_len, static_kv, ): # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: key_padding_mask = torch.cat((prev_key_padding_mask, key_padding_mask), dim=1) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1)).bool() if prev_key_padding_mask.is_cuda: filler = filler.cuda() key_padding_mask = torch.cat((prev_key_padding_mask, filler), dim=1) elif key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1)).bool() if key_padding_mask.is_cuda: filler = filler.cuda() key_padding_mask = torch.cat((filler, key_padding_mask), dim=1) return key_padding_mask
[docs] def reorder_incremental_state(self, incremental_state, new_order): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): if input_buffer[k] is not None: input_buffer[k] = input_buffer[k].index_select(0, new_order) self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state): return utils.get_incremental_state( self, incremental_state, 'attn_state', ) or {} def _set_input_buffer(self, incremental_state, buffer): utils.set_incremental_state( self, incremental_state, 'attn_state', buffer, )
[docs] def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): return attn_weights
[docs] def upgrade_state_dict_named(self, state_dict, name): prefix = name + '.' if name != '' else '' items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + 'in_proj_weight'): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + 'q_proj.weight'] = state_dict[k][:dim] items_to_add[prefix + 'k_proj.weight'] = state_dict[k][dim:2*dim] items_to_add[prefix + 'v_proj.weight'] = state_dict[k][2*dim:] keys_to_remove.append(k) k_bias = prefix + 'in_proj_bias' if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + 'q_proj.bias'] = state_dict[k_bias][:dim] items_to_add[prefix + 'k_proj.bias'] = state_dict[k_bias][dim:2*dim] items_to_add[prefix + 'v_proj.bias'] = state_dict[k_bias][2*dim:] keys_to_remove.append(prefix + 'in_proj_bias') for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value